If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-4x-345=0
a = 1; b = -4; c = -345;
Δ = b2-4ac
Δ = -42-4·1·(-345)
Δ = 1396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1396}=\sqrt{4*349}=\sqrt{4}*\sqrt{349}=2\sqrt{349}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{349}}{2*1}=\frac{4-2\sqrt{349}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{349}}{2*1}=\frac{4+2\sqrt{349}}{2} $
| 3m+8=14m= | | -3x-2=43 | | -9x+3=5x+20 | | 85•8=8•p | | -5=8-2(x+2)-x | | 4(-4v+5)-6v=4(v-1)-6 | | 3x2=-2 | | 5(3x-9)=7(2x-8) | | 10+w=—9 | | (90+52)•95=90•95+x•95 | | 8(1+2x)-6=13+5x | | x=30+4x | | 6b+4(-2b+6)=10 | | 2•y=0 | | 63+73=73+v | | 2(x-6)=4(x-8) | | x+0.1+0.2+0.25+x=1 | | 8j−5j−–17=–16 | | 9x+3(5x-6)=-30 | | 15-x+7=x+13 | | 1+5x+41=90 | | 4x-(7x-8)=-2 | | 18x-2=38 | | (42+83)+2=42+(83+p) | | 50(10n-1)=5 | | 2(x–3)=2 | | 1+5x+41=180 | | 2(x-6)=4x=24 | | 5x-25=1x+7 | | 1+5x+51=180 | | 1+2x3=D | | 27-8h=6h+20 |